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Abstract
Mathematical methods for modeling biological processes have

become increasingly important in recent decades. We will consider a
mathematical model of hormone secretion in men and use it to illustrate
how different areas of mathematics can contribute to the modeling
process in biology.
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Outline

? Overview of the hypothalmus-pituitary-testicular axis.

? Introduce the deterministic model.

? Reconsider the model as a stochastic model.

? Analysis and discussion.

? Analogy to a harmonic oscillator with variable, nonlinear damping.

? Conclusions and future work.
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Interesting Biology

? Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.

? These levels have been experimentally observed to oscillate with a period
of about 2 to 3 hours.

? An imbalance can cause dramatic changes (mood, acne, and weight).

? Pathway is associated with many other important processes in the body.

? Pharmaceutical interests in chemical castration (Goserelin, Lupron, and
Depo-provera) and to create a male pill.
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The Hypothalmus-Pituitary-Testicular Axis
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The Hypothalmus-Pituitary-Testicular Axis

Modified from Campbell (1996).
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The System

Pituitary

Testes

Hypothalamus

LH

GnRH

T

GnRH = Gonadotropin Releasing Hormone

LH = Luteinizing Hormone

T = Testosterone
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Experimental Observations

Modified from Yen et al. (1999).

Modified from Naftolin et al. (1973).
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

dt
= f(T )− b1R

dL

dt
= g1R− b2L

dT

dt
= g2L− b3T
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

dt
= f(T )− b1R

dL

dt
= g1R− b2L

dT

dt
= g2L− b3T

where
f(T ) =

A

K + T

and A, K, b1, b2, b3, g1, and g2 are all positive constants .
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History of the Model

? Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.

? Smith (1980) studied slight variation involving a Hill coefficient in f(T ).

? Murray (1989) suggested using a time-delay in the production rate of T .

? Enciso and Sontag (2004) proved that the system has a globally stable
fixed point (regardless of the length of the time-delay) and therefore does
not have a limit cycle or sustained oscillations.

? More detailed (and more complicated) models include those by Cartwright
and Husain (1986) and Keenan et al. (1998 and 2000).
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The Fixed Point

The system of differential equations has a fixed point wherever

R∗ =
1
b1

f(T ∗)

L∗ =
g1

b2
R∗

T ∗ =
g2

b3
L∗
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The Fixed Point

The system of differential equations has a fixed point wherever

R∗ =
1
b1

f(T ∗)

L∗ =
g1

b2
R∗

T ∗ =
g2

b3
L∗

or, plugging in the assumed form of f(T ) and solving, we find a positive fixed
point at

R∗ =
−Kb1b2b3 +

√
(Kb1b2b3)2 + 4b1b2b3g1g2A

2b1g1g2

L∗ =
−Kb1b2b3 +

√
(Kb1b2b3)2 + 4b1b2b3g1g2A

2b1b2g2

T ∗ =
−Kb1b2b3 +

√
(Kb1b2b3)2 + 4b1b2b3g1g2A

2b1b2b3
.
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Stability of the Fixed Point

LOCALLY:

The characteristic equation of the linearized system near the fixed point is

(λ + b1)(λ + b2)(λ + b3)− f ′(T ∗)g1g2 = 0

which only has solutions with negative real parts, i.e. Re(λ) < 0.
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Stability of the Fixed Point

LOCALLY:

The characteristic equation of the linearized system near the fixed point is

(λ + b1)(λ + b2)(λ + b3)− f ′(T ∗)g1g2 = 0

which only has solutions with negative real parts, i.e. Re(λ) < 0.

GLOBALLY:

Enciso and Sontag (2004) went on to show that this equilibrium point is not
only locally stable, but globally stable.

SO:

The deterministic model does not have limit cycles and cannot have sustained
oscillations, which was the purpose of the model! So what do we do next?
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Reconsider the Physical Basis of the Problem

Take seriously the fact that events, such as the production or degradation of
hormone molecules, occur in an essentially random manner. Intrinsic
fluctuations play an important role when there are low numbers of molecules
present.
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(R,L,T)

(R,L,T−1)

(R,L,T+1)

(R−1,L,T) (R+1,L,T)
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Reconsider the Physical Basis of the Problem

Take seriously the fact that events, such as the production or degradation of
hormone molecules, occur in an essentially random manner. Intrinsic
fluctuations play an important role when there are low numbers of molecules
present.

(R,L,T)

(R,L,T−1)

(R,L,T+1)

(R−1,L,T) (R+1,L,T)

(R,L+1,T)

(R,L−1,T)

a1 a0/
a0

a0

a0

a0

a0

/a

/a

/a

/a

/a
4

2

5

6

3
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Reaction Probability Density Function
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Reaction Probability Density Function

When will the next event occur and what type of event will it be?

Define

P (τ, µ)dτ ≡probability at time t that the next event will occur

in the differential time interval (t + τ, t + τ + dτ)

and will be a type µ event,

where 0 ≤ τ <∞ and µ simply indicates what type of event occurs.

This joint probability distribution function can be written as

P (τ, µ)dτ = P0(τ)aµdτ

where P0(τ) is the probability that no event occurs in the time interval (t, t + τ)
and aµdτ is the probability that event µ occurs in the interval (t + τ, t + τ + dτ).



MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 12

Density Function Cont’d...

Let

a0 =
6∑

i=1

ai
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Density Function Cont’d...

Let

a0 =
6∑

i=1

ai

then we have
P0(t + dt) = P0(t)(1− a0dt)

or, rearranging a little, we have

P0(t + dt)− P0(t)
dt

= −a0P0(t)

from which it is easily deduced that

P0(t) = e−a0t.
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Density Function Cont’d...

So we have

P (τ, µ)dτ = P0(τ)aµdτ
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Density Function Cont’d...

So we have

P (τ, µ)dτ = P0(τ)aµdτ

=
(

aµ

a0

)
a0e

−a0τdτ
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Density Function Cont’d...

So we have

P (τ, µ)dτ = P0(τ)aµdτ

=
(

aµ

a0

)
a0e

−a0τdτ

= P (µ)P (τ)dτ

where
P (µ) =

aµ

a0

and
P (τ) = a0e

−a0τ .
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Schematic of the Density Function

From Gillespie (1976).
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The Probability Distribution Function

F (x) ≡
∫ x
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P (x′)dx′
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∫ x
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P (x′)dx′

To generate a random value x according to a given density function P (x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take x such that

F (x) = r or x = F−1(r)
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The Probability Distribution Function

F (x) ≡
∫ x

−∞
P (x′)dx′

To generate a random value x according to a given density function P (x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take x such that

F (x) = r or x = F−1(r)

since
F (x′ + dx′)− F (x′) = F ′(x′)dx′ = P (x′)dx′.
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Our Distribution Functions

P (τ) = a0e
−a0τ −→ F (τ) = 1− e−a0τ

P (µ) =
aµ

a0
−→ F (µ) =

µ∑
k=1

P (k)
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Our Distribution Functions

P (τ) = a0e
−a0τ −→ F (τ) = 1− e−a0τ

P (µ) =
aµ

a0
−→ F (µ) =

µ∑
k=1

P (k)

So choose r1 and r2 from uniform distribution in the unit interval and

τ =
1
a0

ln
(

1
r1

)
µ−1∑
k=1

ak

a0
< r2 ≤

µ∑
k=1

ak

a0
.
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The Stochastic Formulation

We need to convert concentrations to numbers of molecules and reaction rate
parameters to probability transition rates. For the deterministic model, we
have suggested and experimentally measured values listed in the literature. A
dimensional analysis shows

[A] =
mass2

volume2min
[K] =

mass
volume

[g1] = [g2] =
(mass

mass

) 1
min

[b1] = [b2] = [b3] =
1

min
.
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The Stochastic Formulation

We need to convert concentrations to numbers of molecules and reaction rate
parameters to probability transition rates. For the deterministic model, we
have suggested and experimentally measured values listed in the literature. A
dimensional analysis shows

[A] =
mass2

volume2min
[K] =

mass
volume

[g1] = [g2] =
(mass

mass

) 1
min

[b1] = [b2] = [b3] =
1

min
.

After the conversion, all we need to do is run the Gillespie algorithm with

a1 =
A

K + T (t)
a2 = b1R(t)

a3 = g1R(t) a4 = b2L(t)

a5 = g2L(t) a6 = b3T (t).
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A Stochastic Simulation
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Simulation of hormone secretion for physical parameter values, A = 10−4, K = 10−7,
b1 = 0.23, b2 = 0.032, b3 = 0.046, g1 = 0.2618, and g2 = 0.9015. Average number of
molecules are represented by dashed lines; average R is 4.20, average L is 31.90, and
average T is 583.44.
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A Stochastic Simulation
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Two dimensional projections and three dimensional plot of simulation trajectory for the
physical parameter values, A = 10−4, K = 10−7, b1 = 0.23, b2 = 0.032, b3 = 0.046,
g1 = 0.2618, and g2 = 0.9015. Average number of molecules are represented by asterisks;
average R is 4.20, average L is 31.90, and average T is 583.44.
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Period Sensitivity Analysis
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Initial eigenvalues were λ1 = −0.2385 and λ2,3 = −0.0347± 0.0404i.
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A Stochastic Simulation
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Simulation of hormone secretion for parameter values, A = 10−4, K = 10−7, b1 = 0.23,
b2 = 0.07, b3 = 0.1, g1 = 0.2618, and g2 = 0.9015. Average number of molecules are
represented by dashed lines; average R is 9.09, average L is 33.92, and average T is
300.07.
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A Stochastic Simulation
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Two dimensional projections and three dimensional plot of simulation trajectory for the
physical parameter values, A = 10−4, K = 10−7, b1 = 0.23, b2 = 0.07, b3 = 0.1,
g1 = 0.2618, and g2 = 0.9015. Average number of molecules are represented by asterisks;
average R is 9.09, average L is 33.92, and average T is 300.07.
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Lomb Spectral Analysis
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The largest peak corresponds to a frequency of 2.3429× 10−4 Hz.
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Threshold Phenomenon
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Simulation to illustrate the threshold phenomenon. Parameter values are A = 10−1,
K = 10−4, b1 = 0.23, b2 = 0.032, b3 = 0.046, g1 = 0.2618, and g2 = 0.9015.
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Analogy to Harmonic Oscillator with Variable Damping

For further discussion of the threshold phenomenon, consider the system of
differential equations

dx

dt
= y

dy

dt
= −x

4
− y

x2 + y2 + 0.1
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Analogy to Harmonic Oscillator with Variable Damping

For further discussion of the threshold phenomenon, consider the system of
differential equations

dx

dt
= y

dy

dt
= −x

4
− y

x2 + y2 + 0.1

The nullclines of this system are

x-nullcline: y = 0

y-nullclines: y =
−2± 2

√
1− x

(
x3

4 + x
40

)
x
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Variable Damping Harmonic Oscillator

0 20 40 60 80

−10

−5

0

5

10

time

x(t)
y(t)

−15 −10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

x(t)

y(
t)

Example trajectory and phase curve for the harmonic oscillator with nonlinear damping. Initial
conditions are x(0) = 3 and y(0) = 6.
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Variable Damping Phase Portrait
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Phase portrait of the harmonic oscillator with nonlinear damping. Initial conditions for the
phase curves (solid lines) are x(0) = 0 and y(0) = ±5. The dashed curves are the
nullclines for the system.
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Variable Damping Threshold Phenomenon
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Illustration of the threshold phenomenon for the harmonic oscillator with nonlinear damping.
Initial conditions for the phase curves (solid lines) are (x(0), y(0)) = (−1.5, 1.5) for curve 1,
(x(0), y(0)) = (−2, 2) for curve 2, and (x(0), y(0)) = (−2.5, 2.5) for curve 3. The
dashed curves are the nullclines for the system.
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Conclusions

? By approaching the hormone model from a different physical basis we saw
how intrinsic fluctuations can incite oscillations for low numbers of
molecules.

? Even though the deterministic model has a globally stable fixed point, the
stochastic model was able to capture the pulsatile behavior of the blood
hormone levels.

? By analogy, we can compare the observed threshold phenomenon to a
harmonic oscillator with varying, nonlinear damping.
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Future Work

? Do a Poincaré-map-like analysis of the oscillations we see with the
stochastic model and study the resulting distribution.

? Further details can be incorporated into the model, such as basal hormone
secretion, temporal shifts, and additional negative feedback relationships in
the signaling pathway.

? The model can be tested to see if intrinsic fluctuations are still significant
when the system has a larger number of molecules or if perhaps extrensic
fluctuations could play a role.
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